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Abstract. We study theoretically the electron transport in GaAs-based quasi-two-dimensional
systems under the influence of an intense terahertz electromagnetic irradiation, using a balance
equation approach in which the slowly varying part of the centre-of-mass velocity is distinguished
from the rapidly oscillating part of it. Electron scatterings by charged impurities, and acoustic
and polar optical phonons are considered and up to as many as|n| = 60 multiphoton channels
are taken into account. The carrier mobility and the electron temperature of a typical GaAs
quantum well system are calculated in the limit of small dc drift velocity (small dc field) as
functions of the radiation-field strength for various frequencies in the range from 1 to 10 THz
at lattice temperatureT = 10, 77, 150 and 300 K. We find that at low lattice temperature
(T = 10 K), dc mobility decreases monotonically with increasing strength of the radiation field,
and lower frequency generally has a stronger effect in suppressing the mobility, in agreement
with the experimental observation. At room temperature, on the other hand, the present theory
predicts an enhancement of the dc mobility due to irradiation with a THz field.

1. Introduction

With the development of the free-electron laser, which provides a tunable source of linearly
polarized far-infrared or terahertz electromagnetic radiation of high intensity, the nonlinear
dynamics of low-dimensional electron gas driven by an intense terahertz (THz) electric field
has become a central focus of many experimental and theoretical studies in the literature
[1–6]. Among many interesting phenomena that have been reported, the effect of an intense
THz irradiation on electron transport in two-dimensional (2D) semiconductors has attracted
much attention. Asmaret al [1, 2] carried out a series of transport and optical measurements
on GaAs/AlGaAs heterojunctions and quantum wells under an intense THz drive at low
temperatures. They found that the dc ohmic conductivity of these quasi-2D systems is
strongly suppressed by irradiation with an intense high-frequency electromagnetic field, and
its behaviour is sensitively dependent on the frequency and the amplitude of the radiation.
This suppression of the dc conductivity in quasi-2D systems has been attributed solely to
the rise of the electron temperature caused by the illumination with the intense radiation
field of THz frequency. A recent theoretical investigation [6], which takes account of
other nonlinear effects of the oscillatory THz field in addition to the increase of the electron
temperature by directly solving the time-dependent momentum and energy-balance equations
to obtain the steady oscillating response of the drift velocity and the electron temperature
to the time-dependent sinusoidal field, predicted both a dc-current suppression and an
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electron temperature enhancement at low temperatures, in agreement with the experiments.
These low-temperature results, though quantitatively different from those derived from the
carrier temperature model, do not clearly exclude the possibility that the decrease of the dc
conductivity stems mainly from the rise of the electron temperature.

The purpose of the present paper is to investigate the effect of an intense terahertz
irradiation on electron transport in two-dimensional semiconductors over a wider lattice
temperature region: from liquid helium to room temperature.

Although the balance equation method [7–9] used in reference [6] is a reliable method
for investigating the system response to a high-frequency electric field, It is rather time
consuming to calculate the effect of an intense THz field on the dc transport, because
one has to follow the time evolution of the applied THz field from the initial state to the
steady oscillatory state before obtaining any result under the influence of a THz irradiation.
Therefore we will use a different balance equation approach, which allows one to calculate
the effect of a THz field of arbitrary strength on the dc transport of a 2D system based on a
set of time-independent rather than time-dependent equations, and thus is more convenient
for carrying out systematic analysis.

Our theoretical results show that at low lattice temperature (T = 10 K), dc mobility
decreases monotonically with increasing strength of the radiation field, and lower frequency
generally has a stronger effect in suppressing the mobility, in agreement with the
experimental observation. At room temperature, on the other hand, the present theory
predicts a significant enhancement of the dc mobility due to the irradiation with a THz
field—quite different from the low-temperature results. This provides a feasible way to test
the theory experimentally.

2. 2D centre-of-mass and relative-electron variables

We considerNs electrons in a quasi-2D system, such as a GaAs/AlGaAs heterojunction
or a quantum well, in which electrons are subjected to a confining potentialV (z) in the
z-direction but are free to move in thex–y plane. The Hamiltonian of the electron system
is written as

He =
∑
j

[
p2
j‖

2m
+ p2

jz

2mz
+ V (zj )

]
+
∑
i<j

Vc(ri‖ − rj‖, zi, zj ) (1)

wherepj‖ ≡ (pjx, pjy) and rj‖ ≡ (xj , yj ) are the momentum and coordinate of thej th
electron in the 2D plane, andpjz and zj are those perpendicular to the plane;m andmz
are, respectively, the effective mass parallel and perpendicular to the plane; the last term
represents the electron–electron interaction.

Assuming that a uniform dc (or slowly varying) electric fieldE0 and a uniform sinusoidal
radiation field of frequencyω and amplitudeEω:

E(t) = E0+Eω sin(ωt) (2)

(bothE0 andEω being of arbitrary strength) are applied in the 2D plane, we describe this
electric field by means of a vector potentialA(t) and a scalar potentialϕ(r) of the form

A(t) = (Eω/ω) cos(ωt) (3)

ϕ(r) = −r ·E0. (4)

In the presence of such an electric field the Hamiltonian of the system becomes

HeE=
∑
j

[
1

2m
(pj‖ − eA(t))2+ ϕ(rj‖)+

p2
jz

2mz
+ V (zj )

]
+
∑
i<j

Vc(ri‖ − rj‖, zi, zj ). (5)
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Since thez-direction motion is not affected by the field, we only need to separate the centre-
of-mass motion from the relative motion in thex–y plane by introducing 2D centre-of-mass
momentum and coordinate variablesP = (Px, Py) andR = (X, Y ) [7, 8]:

P =
∑
j

pj‖ R = 1

Ns

∑
j

rj‖ (6)

and the relative-electron momentum and coordinate variablesp′j = (p′j‖, pjz) and r′ =
(r′j‖, zj ) (j = 1, . . . N), with

p′j‖ = pj‖ −
1

Ns
P r′j‖ = rj‖ −R. (7)

In terms of these variables, the Hamiltonian can be written as the sum of the centre-of-mass
partHCM and a relative-electron partHer:

HeE= HCM +Her

HCM = P 2

2Nsm
− P · vω cos(ωt)−NseE0 ·R+ Nse

2

m
A2(t) (8)

with

vω ≡ eEω/(mω) (9)

and

Her =
∑
j

[
(p′j‖)

2

2m
+ p2

jz

2mz
+ V (zj )

]
+
∑
i<j

Vc(r
′
i‖ − r′j‖, zi, zj ). (10)

This relative-electron Hamiltonian is the same as that of equation (1) for the original electron
system with reference to the lattice, and thus can be written in the second-quantization
representation as

Her =
∑
s,k‖,σ

εs(k‖)c
†
sk‖σ csk‖σ +

1

2

∑
k‖,k′‖,q‖,σ,σ

′

ι′,ι,s ′,s

Vι′,ι,s ′,s(q‖)c
†
ι′k‖+q‖σ c

†
s ′k′‖−q‖σ ′csk

′
‖σ ′cιk‖σ . (11)

Here c†sk‖σ (csk‖σ ) are creation (annihilation) operators of the relative electrons. We have
used the single-electron state in the absence of the Coulomb interaction as the basis for
the second-quantization representation, which is designated by a subband indexs and a 2D
wavevectork‖ with the energy

εs(k‖) = εs +
k2
‖

2m
(12)

and wave function

ψsk‖(r, z) = eik‖·rζs(z) (13)

where ζs(z) is the envelope function. We assume that the system has area unity in the
x–y plane. The expression forVι′,ι,s ′,s(q‖) is given in reference [8]. At the same time,
the electron–impurity and electron–phonon interactions,Hei andHep, can also be written in
terms of the centre-of-mass coordinateR and the creation and annihilation operators of the
relative electrons [7].
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3. Force and energy-balance equations for quasi-2D systems

With the help of the total Hamiltonian of the electron–phonon system,

H = HCM +Her+Hei+Hep+Hph

(Hph stands for the phonon Hamiltonian), we can calculate the rates of change of the CM
coordinateR, the CM momentumP and the relative-electron energyHer on the basis of
the Heisenberg equation of motion. In particular, the rate of change of the CM coordinate
R, which is the CM velocityV , is given by

V ≡ Ṙ = −i[R, H ] = P

Nsm
− vω cos(ωt) (14)

containing a rapid oscillatory term induced by the radiation field.
Following reference [7], in view of the enormous mass of the CM, we can treat the

CM coordinateR and velocityV classically, and by neglecting their small fluctuations we
will regard them as time-dependent expectation (or average) values of the CM coordinate
and velocity,R(t) andV (t). Furthermore, the CM will not be able to follow the rapid
oscillation of the radiation field if its frequency is high enough. Therefore, in the gauge
used, the statistical average of the CM momentum can be regarded as a slowly varying
quantity 〈

P

Nsm

〉
= v0 (15)

which is identified as the average velocity of the CM, or the average drift velocity of the
carrier system. Thus we write

V (t) = v0− vω cos(ωt) (16)

and

R(t) =
∫ t

t0

V (s) ds +R(t0). (17)

This indicates that the interactionHei+Hep, the rate of change of the CM momentum,
−i[P , H ], and the rate of change of the relative-electron energy,−i[Her, H ], are time-
dependent operators in the relative-electron–phonon systems through their dependence on
the CM coordinateR(t). In the presence of a uniform high-frequency radiation field, the
relative-electron–phonon system turns out to be the same as that discussed in reference [8]
for the case without the radiation field (Eω = 0), and thus we can proceed in exactly the
same way as in reference [8]. For 2D systems having electron sheet density of the order
of, or higher than, 1015 m−2, the intrasubband and intersubband Coulomb interaction are
sufficiently strong that it is adequate to describe their transport state using a single electron
temperatureTe and a common chemical potential for all of the subbands. Therefore the
density matrix of the relative-electron–phonon system can be solved from the Liouville
equation by starting from an initial state at timet = −∞, in which the phonon system is in
equilibrium at the lattice temperatureT and the relative-electron system is in equilibrium
at an electron temperatureTe:

ρ̂|t=−∞ = ρ̂0 = 1

Z
e−Her/TeeHph/T . (18)

With the density matrix thus obtained to the first order inHei + Hep, we can derive
the momentum-balance equation by taking the statistical average of the operator equation
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Ṗ = −i[P , H ] and identifyingṖ asNsm(dv0/dt). We have

Nm
d

dt
v0 = NeE0+ Fi + Fp. (19)

The frictional forcesFi and Fp, due to impurity and phonon scatterings, are given
respectively by

Fi =
∑
s ′,s,q‖

q‖|Us ′s(q‖)|2
∫ t

−∞
dt ′ exp

[
iq‖ ·

∫ t

t ′
V (τ ) dτ

]

×
∑
k‖,σ

〈 [
c
†
s ′k‖+q‖σ (t − t ′)csk‖σ (t − t ′), c

†
sk‖σ c

†
s ′k‖+q‖σ

] 〉
0

. (20)

Fp = 2
∑
s ′,s,q,λ

q‖|Ms ′s(q, λ)|2
∫ t

−∞
dt ′ exp

[
iq‖ ·

∫ t

t ′
V (τ ) dτ

]
×
∑
k‖,σ

〈 [
φqλ(t − t ′)c†s ′k‖+q‖σ (t − t ′)csk‖σ (t − t ′), φ−qλc

†
sk‖σ c

†
s ′k‖+q‖σ

] 〉
0

.

(21)

Here, the statistical averaging is performed with respect to the initial density matrixρ0

given by equation (18),Us ′s(q‖) is an effective impurity potential, andMs ′s(q, λ) is the
electron–phonon matrix element (with the 3D phonon model) related to subbandss ′ ands.
Their explicit expressions were given in reference [8].

With the velocity function given by equation (16), the exponential factor in the above
equations becomes

exp

[
iq‖ ·

∫ t

t ′
V (τ ) dτ

]
= exp

[
iq‖ · v0(t − t ′)

]
exp

[−iq‖ · rω(sin(ωt)− sin(ωt ′))
]

(22)

with

rω ≡ vω/ω = eEω/(mω
2). (23)

Using the equality related to the Bessel functions,

e−iz sinx =
∞∑

n=−∞
Jn(z)e

−inx

we can rewrite the exponential factor in equations (20) and (21) as a sum of two terms:
∞∑

n=−∞
J 2
n (q‖ · rω)eiq‖·v0(t−t ′)e−inω(t−t ′)

+
∑
m6=0

e−imωt

[ ∞∑
n=−∞

Jn(q‖ · rω)Jn−m(q‖ · rω)eiq‖·v0(t−t ′)e−inω(t−t ′)
]
. (24)

After the integration overt ′, the first term yields a contribution no longer dependent on
t , while the second term is rapidly oscillating at the fundamental frequencyω and its
harmonics. If what one measures is an average over a time interval much longer than the
period of the radiation field, the contribution of the second term is not detectable. Therefore
we are left with

Fi =
∑
s ′,s,q‖

q‖|Us ′s(q‖)|2
∞∑

n=−∞
J 2
n (q‖ · rω)52(s

′, s, q‖, ω0− nω) (25)
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Fp = 2
∑
s ′,s,q,λ

q‖|Ms ′s(q, λ)|2
∞∑

n=−∞
J 2
n (q‖ · rω)

× 52(s
′, s, q‖, �qλ + ω0− nω)

[
n

(
�qλ

T

)
− n

(
�qλ + ω0− nω

Te

)]
. (26)

Hereω0 ≡ q‖ · v0, n(x) ≡ 1/[exp(x)− 1] is the Bose function, and52(s
′, s, q‖, �) is the

imaginary part of the electron density correlation function related to subbandss ′ and s at
electron temperatureTe [8].

The energy-balance equation is obtained by taking the statistical average of the operator
equationḢer = −i[Her, H ] and identifying〈Ḣe〉 as the rate of change of the relative-electron
energyEe. By the same consideration as above, we arrive at the result

d

dt
Ee = −v0 · (Fi + Fp)−W + Sp (27)

where

W = 2
∑
s ′,s,q,λ

�qλ|Ms ′s(q, λ)|2
∞∑

n=−∞
J 2
n (q‖ · rω)

× 52(s
′, s, q‖, �qλ + ω0− nω)

[
n

(
�qλ

T

)
− n

(
�qλ + ω0− nω

Te

)]
(28)

is the rate of energy transfer from the electron system to the phonon system, and

Sp =
∑
s ′,s,q‖

|Us ′s(q‖)|2
∞∑

n=−∞
J 2
n (q‖ · rω)nω52(s

′, s, q‖, ω0− nω)

+ 2
∑
s ′,s,q,λ

|Ms ′s(q, λ)|2
∞∑

n=−∞
J 2
n (q‖ · rω)nω

× 52(s
′, s, q‖, �qλ + ω0− nω)

[
n

(
�qλ

T

)
− n

(
�qλ + ω0− nω

Te

)]
(29)

is the rate of gain of the energy of the electron system from the radiation field through the
multiphoton process (n = ±1,±2, . . .) in association with intraband and interband trans-
itions of electrons. Whenω is less than the energy separation of the subbands, such a
transition process is possible only with the assistance of the impurity or phonon scattering.

The frictional forcesFi andFp, and the electron energy-loss rateW and energy-gain rate
Sp, are functions ofv0 andTe. They also depend on the amplitudeEω and the frequencyω
of the radiation field. A radiation field affects carrier transport (i) by changing the frictional
forcesFi , Fp and the electron energy-loss rateW and (ii) by supplying an energySp
to the electron system through the multiphoton process (n = ±1,±2, . . .). Even without
absorption or emission of photons (zero-photon processes, i.e.n = 0 only), the frictional
forces and the energy-loss rate are still affected by the presence of a finite radiation field
Eω 6= 0.

In the case without a radiation field (Eω = 0), in view of the facts thatJ0(0) = 1
and Jn(0) = 0 (n 6= 0) we haveSp = 0, andF and W reduce to the corresponding
expressions of reference [8], as they should. Likewise, for very high frequency we have
J 2
n (q‖ · rω) ∝ ω−4|n|, leading to a vanishingSp and the sameF andW as those without a

radiation field. This indicates that a very-high-frequency radiation field has no influence on
intraband carrier transport. The far-infrared or THz field is the regime of the electromagnetic
waves, which would strongly affect the transport behaviour of carriers in semiconductors.
The momentum- and energy-balance equations derived here provide a convenient tool for
analysing this effect.
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4. The small-v0 limit

For constant (dc) fieldE0, equations (19) and (27) apparently have a steady-state solution
with constantv0 andTe determined by the following equations:

NseE0+ Fi + Fp = 0 (30)

NseE0 · v0−W + Sp = 0. (31)

To determine the ohmic mobility of a quasi-2D system subjected to an intense high-
frequency irradiation, we consider the small-v0 limit of equations (30) and (31). In the limit
of v0→ 0, the energy-balance equation, equation (31), reduces to

0= Sp −W =
∑
s ′,s,q‖

|Us ′s(q‖)|2
∞∑

n=−∞
J 2
n (qxrω)nω52(s

′, s, q‖,−nω)

+ 2
∑
s ′,s,q,λ

|Ms ′s(q, λ)|2
∞∑

n=−∞
J 2
n (qxrω)(nω −�qλ)

× 52(s
′, s, q‖, �qλ − nω)

[
n

(
�qλ

T

)
− n

(
�qλ − nω

Te

)]
. (32)

Here we assume that the radiation field is in thex-direction. This equation determines the
electron temperatureTe, which may be greatly different from the lattice temperatureT when
the system is irradiated with an intense THz field even without a dc field.

The force-balance equation (30) determines the resistivity, which depends on the relative
directions ofE0 andEω. In the case ofE0‖Eω or E0 ⊥ Eω, v0 is in the same direction
asE0, and the inverse mobility, defined by 1/µ ≡ E0/v0, is given by

1

µ
= 1

µi
+ 1

µp
(33)

1

µi
= 1

Nse

∑
s ′,s,q‖

q2
α|Us ′s(q‖)|2

∞∑
n=−∞

J 2
n (qxrω)

[
∂

∂�
52(s

′, s, q‖, �)
]
�=nω

(34)

1

µp
= 2

Nse

∑
s ′,s,q,λ

q2
α|Ms ′s(q, λ)|2

∞∑
n=−∞

J 2
n (qxrω)

{
52(s

′, s, q‖, �qλ − nω)
[

1

Te
n′
(
�qλ

Te

)]

+
[
n

(
�qλ − nω

Te

)
− n

(
�qλ

T

)][
∂

∂�
52(s

′, s, q‖, �)
]
ω=�qλ−nω

}
. (35)

Hereα = x or y for the parallel (E0‖Eω) or perpendicular (E0 ⊥ Eω) configuration.

5. Numerical results

We have calculated the electron temperatureTe and mobility 1/µ in the small-v0 limit at
lattice temperaturesT = 10, 77, 150 and 300 K in a GaAs-based quantum well having the
well width a = 12.5 nm, electron sheet densityNs = 5.5× 1015 m−2 and low-temperature
(4.2 K) linear mobility µ0 = 31 m2 V−1 s−1, subjected to a radiation field of various
frequencies and amplitudes.

We consider both the electron–polar-optical-phonon scattering (via the Fröhlich
coupling) and the electron–acoustic-phonon scattering (via the deformation potential and
the piezoelectric couplings), as well as the elastic scattering, which is assumed to be due
to the remote charged impurities located at a distance of 40 nm from the centre plane of
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Figure 1. The calculated electron temperatureTe is shown as a function of the strengthEω of
the radiation field having frequencyω/2π = 1, 1.52, 2.2, 3, 4, 6 and 9 THz, in the small-dc-field
limit E0 ∼ 0 at lattice temperatureT = 10 K.

Figure 2. The calculated electron temperatureTe is shown as a function of the strengthEω
of the radiation field having frequencyω/2π = 1, 2, 3, 4.2, 6 and 9 THz, in the small-dc-field
limit E0 ∼ 0 at lattice temperatureT = 77 K.

the well. The phonons are assumed to be the same as those of bulk GaAs and to remain
in equilibrium at the lattice temperatureT during the transport process. We consider the
role of the two lowest subbands (s = 0, 1). The energy separation between the bottoms of
the zeroth and the first subbands,ε10 ≡ ε1− ε0, is taken to be 69 meV. For simplicity, the
form factors are calculated using the corresponding subband functions of an infinitely deep
potential well having the same well width. The other material parameters of bulk GaAs
used in the calculation are listed in table 1 (me stands for the free-electron mass).

In the numerical calculation we have included contributions from as many optical
channels as are needed. The larger the amplitudeEω or the lower the frequencyω
of the radiation field, the more optical channels have to be included to give sufficient
accuracy. A maximum of|n| = 0, 1, . . . ,60 has been taken in obtaining the results presented
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Figure 3. The calculated electron temperatureTe is shown as a function of the strengthEω of
the radiation field having frequencyω/2π = 1.5, 2, 3, 4.2 and 6 THz, in the small-dc-field limit
E0 ∼ 0 at lattice temperatureT = 150 K.

Figure 4. The calculated electron temperatureTe is shown as a function of the strengthEω of
the radiation field having frequencyω/2π = 1.5, 2.2, 3, 4.2 and 6 THz, in the small-dc-field
limit E0 ∼ 0 at lattice temperatureT = 300 K.

in this section.
Figures 1–4 show the electron temperatureTe as a function of the radiation-field strength

Eω for several different frequenciesω/2π from 1 to 9 THz in the parallel configuration
at lattice temperatureT = 10, 77, 150 and 300 K, respectively. AtT = 10 K, Te grows
rapidly with Eω increasing from zero, and shows a minimum for lower frequencies (1–
3 THz) before its monotonic rise with risingEω. At T = 77 K, the initial rising ofTe
disappears but minima remain, exhibiting electron temperature cooling (Te is lower than
T ) within a certain range ofEω for frequencyω/2π = 1, 2, 3 and 4 THz. At higher
temperatures (T = 150 and 300 K) all of these features disappear and for a given frequency
Te grows with increasingEω monotonically.

With these Te-values, the mobility of the quantum well system irradiated with a
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Table 1. Parameters for GaAs.

Parameter Unit Value

Material mass densityd g cm−3 5.31
Effective electron edge-band massm me 0.067
Optical dielectric constantκ∞ l 10.8
Low-frequency dielectric constantκ l 12.9
Transverse sound velocityvst m s−1 2.48× 103

Longitudinal sound velocityvsl m s−1 5.29× 103

Longitudinal-optical-phonon energy�LO meV 35.4
Acoustic deformation potential4 eV 8.5
Piezoelectric constante14 V s−1 1.41× 109

Figure 5. The normalized mobilityµ(Eω)/µ(0) at
lattice temperatureT = 10 K, in the small-dc-field
limit E0 ∼ 0 in the parallel configuration, is shown
as a function of the radiation-field strengthEω having
frequencyω/2π = 1, 1.52, 2.2, 3, 4, 6 and 9 THz.

Figure 6. The normalized mobilityµ(Eω)/µ(0) at
lattice temperatureT = 77 K, in the small-dc-field
limit E0 ∼ 0 in the parallel configuration, is shown
as a function of the radiation-field strengthEω having
frequencyω/2π = 1, 2, 3, 4.2, 6 and 9 THz.

THz field of strengthEω, µ(Eω), is obtained from formulae (33)–(35). Figures 5–8
show the calculated mobilityµ(Eω) normalized with respect to its value in the absence
of the radiation field (Eω = 0), µ(0), as a function of the radiation-field strengthEω
for several different frequenciesω/2π from 1 to 9 THz in the parallel configuration at
lattice temperatureT = 10, 77, 150 and 300 K, respectively. At low lattice temperature
(T = 10 K),µ(Eω)/µ(0) monotonically decreases with increasingEω for a fixed frequency.
Lower frequency generally has a stronger effect than higher frequency.µ(Eω) can be
suppressed by the radiation field down to about 0.05 µ(0). When lattice temperature
increases (T = 77 K), a minimum in theµ(Eω)/µ(0) againstEω curve shows up at
lower frequency. Atω/2π = 1 THz, µ(Eω)/µ(0) reaches a minimum of 0.2 at around
Eω = 9.5 kV cm−1 before increasing with increasingEω. With further increased lattice
temperature (T = 150 K), atω/2π = 1.5 THz thisµ(Eω)/µ(0) reaches a minimum of
only 0.65 at aroundEω = 8.5 kV cm−1 and then rapidly increases. At room temperature,
T = 300 K, the behaviour ofµ(Eω)/µ(0) is almost completely reversed in comparison with
that atT = 10 K: instead of decreasing, the calculatedµ(Eω)/µ(0) essentially increases
with increasingEω. Only for high frequencies (2.2, 3, 4.2 and 6 THz) doesµ(Eω)/µ(0)



Effect of irradiation on electron transport in 2D semiconductors 3211

Figure 7. The normalized mobilityµ(Eω)/µ(0) at
lattice temperatureT = 150 K, in the small-dc-field
limit E0 ∼ 0 in the parallel configuration, is shown
as a function of the radiation-field strengthEω having
frequencyω/2π = 1.5, 2, 3, 4.2 and 6 THz.

Figure 8. The normalized mobilityµ(Eω)/µ(0) at
lattice temperatureT = 300 K, in the small-dc-field
limit E0 ∼ 0 in the parallel configuration, is shown
as a function of the radiation-field strengthEω having
frequencyω/2π = 1.5, 2.2, 3, 4.2 and 6 THz.

show a slight decrease with initial growth ofEω. At ω/2π = 1.5 THz, µ(Eω)/µ(0)
immediately increases with increasingEω from zero.

The above features can be understood by considering the role of an intense radiation
field. As pointed out in section 3, a radiation field affects carrier transport (i) by changing the
frictional forcesFi , Fp and the electron energy-loss rateW and (ii) by supplying an energy
Sp to the electron system through the zero-photon process (n = 0) and the multiphoton
(n > 1) processes. With the increase ofrω ≡ eEω/(mω2), i.e. the increase of the amplitude
or the decrease of the frequency of the radiation field, (i) the contributions to the frictional
force F and the energy-transfer rateW from the zero-photon process are weakened, but
(ii) an increasing number of multiphoton processes become important in determining the
carrier transport. Since the contributions toF and W from multiphoton processes are
generally small due to the cancellation between then and−n terms, an increase inEω
(or a decrease inω) leads to a decrease inF andW if the electron temperature remains
unchanged. On the other hand, the increasing number of multiphoton processes greatly
enhancesSp, the rate of the energy supplied from the radiation field. This, together with the
decreasedW , results in the rise of the electron temperature with growingEω, which, in turn,
enhances the frictional force, i.e. decreases the mobility. This electron-temperature-raising
effect is more remarkable at lower lattice temperature than at higher lattice temperature
because the main electron energy-loss mechanism (polar-optical-phonon scattering) is much
less effective at low temperature. It is the interplay of these two effects that gives rise to the
major numerical features: dc mobility decreases at low lattice temperature (T = 10 K) and
increases at room temperature, while it exhibits minima at lattice temperatures in between,
with increasing strength of the radiation field.

The predicted suppression of the dc current or conductivity by the irradiation with the
THz field at low temperature was indeed observed experimentally in GaAs heterojunctions
and quantum wells [1, 2]. Because of the lack of availability of experimental data at higher
temperatures, the theoretically predicted enhancement of the dc mobility in quasi-2D systems
caused by the irradiation with the THz field at room temperature cannot be compared with
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measurements for the time being. We expect that the pertinent experimental data will be
available in the near future.
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